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B U C K L I N G  OF E L A S T I C  C O M P O S I T E  R I N G S  

U N D E R  I N T E R N A L  I M P U L S I V E  L O A D I N G  

V .  M .  K o r n e v  a n d  G. E. M a k a r o v  UDC 539.3 

The experimentally detected phenomenon of compression fracture of a composite ring made of 
unidirectional fiberglass plastic under initial internal impulsive (explosive) loading is analyzed, 
Fracture results from bending in the compression phase because of loss of stability of the radial 
axisymmetric mode of motion. 

i n t r o d u c t i o n .  The loss of stability of the radial axisymmetric vibration mode of cylindrical shells or 
rings and transition to nonaxisymmetric flexural modes of motion accompanied by an exponential increase 
in the amplitudes of normal deflections has been the subject of extensive theoretical and experimental 
investigations [1-6]. This deformation and fracture pattern is observed for a thin-walled shell or a ring under 
sudden loading by an external radial pressure [1, 3, 5, 6]. However, for shells or rings made of composites, this 
fracture mechanism is also possible under internal impulsive loading [7-10]. This phenomenon is explained 
by the fact that composites, in particular unidirectional composites, in contrast to metals, have much larger 
limiting elastic strains for stretching in the direction of reinforcement (0.04-0.05 and 0.002-0.005, respectively) 
with almost complete absence of plastic strains until fracture [11]. During impulsive stretching of a composite 
shell or a ring in the radial direction, this makes it possible to accumulate a sufficient amount of elastic 
energy to ensure bending fracture of the material in the compression phase due to loss of stability of radial 
axisymmetric vibrations and transition to nonaxisymmetric flexural vibrations. One additional factor (along 
with initial irregularities and nonuniformity in the application of initial loads and distribution of initial 
velocities) that is responsible for loss of stability and fracture of this type for an elastic shell or a ring is the 
low (as compared to metals) shearing rigidity of the packet of reinforcing fibers in the plane of the ring. 

In the present paper, we consider an elastic uniform (but not isotropic) cylindrical ring that models a 
ring made of a unidirectional composite reinforced with a fiber in the circumferential direction with zero angle 
of reinforcement. In this case, the composite material is considered transversely isotropic and is described by 
five independent elastic constants [12]. Since the ring deforms in its plane, only two of the elastic constants 
are used: the modulus of longitudinal elasticity E in the circumferential direction of reinforcement and the 
modulus of transverse shear G in the ring plane. 

1. De r iva t ion  of the  Equa t ions  of Mot ion  of an Elas t ic  R ing  Taking into Account  
Transverse  Shea r  Deformat ions .  We convert the system of differential equations of equilibrium for a 
cylindrical shell [13] to a system of differential equations of equilibrium for a ring of radius R. For this, we 
eliminate the longitudinal coordinate a and the corresponding longitudinal displacement u, the axial and 
transverse forces N1 and Q1, the moments M12 and M21, and the surface forces X. In addition, we redenote 
the derivative with respect to the coordinate 0/0/3 by 0/0c 2. Substituting into this system the expressions 
for the Y and Z components of the surface forces and the additional loads caused by the action of the axial 

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 185-194, 
September-October, 1999. Original article submitted November 20, 1997; revision submitted February 10, 
1998. 

942 0021-8944/99/4005-0942 $22.00 @ 1999 Kluwer Academic/Plenum Publishers 



forces N1 and 2/2 [14] and omi t t ing  the subscript 2, we obtain 

ON 02v 
+ Q - R r n - ~  = O, - N  + - 

O~ 

OM 

O~ 

where mO2v/Ot 2 and mO2w/Ot ~ are inertial forces. 

oq ) 
O~ R 2 k Op 2 + w - R m - ~  

R Q  = O, 

= O, 

(1) 

If the Kirchhoff-Love hypotheses are used, the transverse force in the third equation of system (1) is 
expressed in terms of the bending moment ,  which, in turn,  is expressed in terms of the elastic constants and 
displacement w (deflection). In this case, however, shear strain is ignored. As compared to metals,  composites 
have low shear rigidity and similar (and sometimes even higher) rigidity in extension-compression. Therefore, 
tor a composite shell or a ring, it is necessary to allow for the effect of the shearing strain [15]. For this, it 
is possible to use, for example,  the Timoshenko hypothesis [16]. We then assume that 0 = r + 7, where 0 is 
the angle of rotation of the normal  to the bent axis of the ring, r is the angle of rotation of the rectilinear 
element, and 7 is the angle of rotation of the rectilinear element about the normal (the angle of transverse 
shear). From [16, 17], we have the following expressions for 0, M, and Q: 

1 Ow Eh  a 0 r  Q = kGh7 = kGh v -  - r . 
0 =  ~ v -  , M =  1 2 R ( 1 - u  2) 0~'  

Here E is the modulus of elasticity of the material in extension-compression in the circumferential direction, 
h is the wall thickness of the ring, G is the modulus of transverse shears, and k is a constant factor that  
depends on the type of dis tr ibut ion function of tangential stresses across the thickness of the section. For a 
parabolic distribution of tangential  stresses, this factor is k = 5/6, and for a uniform distribution of tangential 
stresses across the thickness of the shell or ring, k = 1 [18]. Substi tuting the expressions for M and Q into 
system (1) and introducing the notat ion 5 = h2/[12R2(1 - v2)] -1, we obtain 

0--~ + kGh v - ~ - r  - R m - - ~  = O, 

- N  + k a h  -~ - ~  O~ 2 ) - - ~  - - ~  \ 0~ 2 + w - R m  - ~  = 0 ,  (2) 

= o .  Eh5  

In this case, we have a system of three differential equations for three independent  unknown functions (v is the 
displacement along the circumferential coordinate, w is the normal deflection, and r is the angle of transverse 
shear. For isotropic materials,  systems of equations of motion of this type for thin shells taking into account 
transverse shear strain are given in [18], and for composites, they are presented in [19, 20]. In addition, the 
last reference contains the most  complete bibliography on this problem. 

Next, system (2) is converted so that  it reduces to one equation. As in [2-4], we assume that  the 
interaction of circumferential stresses of the axisymmetric mode of motion with bending can cause strong 
growth of only those bending strains for which the median line of the ring appears inextensible. Then, from 
the condition of equality to zero of the circumferential strain, e~, = (1/R)(Ov/O~2 + w) = 0, we obtain 
Ov/O~ = - w  and 03v/0c23 = - 0 2 w / O ~  2. In view of this, after simple transformations system (2) reduces to 
one equation for the function w: 

(1 <3) + Rhp 4 + 2 

Here D = Eh3/(12(1 - u2)) is the cylindrical rigidity, 5 = h2/(12Re(1 - u2)), and m = ph. 
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The  above equation is a differential equation of flexural vibrations of a circular ring in its plane that  
takes into account transverse shear strains and ignores the rotational inertia of the cross section. The  terms of 
the working equation (3) that  contain the factors E ~ / G  can exert a significant effect on the results of solution 
of both stat ic  and dynamic problems. For the case where shear is ignored, it is possible to pass to the limit 
G ~ cx). Thus,  Eq. (3) becomes an equation of flexural vibrations of the ring in its plane that  coincides with 
the equat ions given in [4, 21]. 

Below, we analysis of Eq. (3) in two cases: 
- -  the  axial compressing force is generated by an external,  instantaneously applied hydrostatic pressure 

that  remains constant during deformation; 
- -  the  axial load is a t ime-dependent  potential  function,  and the initial axisymmetric deformation of 

the ring is produced by a velocity that  is instantaneously applied at the initial t ime or by instantaneously 
removed constraints that  were imposed previously. 

2. B u c k l i n g  of  a R i n g  u n d e r  I m p u l s i v e  L o a d i n g .  We examine the stability of the flexural motions 
of the ring under  the action of instantaneously applied external pressure p that  exceeds the critical value. 
Taking into account that  the normal deflection function w(cy) is periodic along the circumferential coordinate 
in the case of flexural vibrations and that  N = - p R ,  we seek a solution in the form 

oo 

w = ~ qn(t)sin (n~2), (4) 
n = l  

where qn(t) are functions of t ime for the ampli tudes of the  corresponding motions. Substi tut ing expression 
(4) into Eq. (3), for the function qn(t), we obtain the ordinary differential equation 

Or2 + + + ~ [ -n6  + 2n 4 _ n 2] 

P ( 1 -  E$'~ 4 

For the case of static external pressure p, the critical external pressure is 

D n 6 - -  2 n  4 + n 2 D . n 2 - 1 

P* -- R 3 (E~/G)n  6 + (1 - (E6 /C) )n  4 - n 2 -- "-~ 1 + ( E 6 / G ) n  2" 

With allowance for transverse shear, the least Euler load (at n = 2) is 

D 3 
Pe - R a 1 + 4E~/G" 

This formula for the least critical load coincides with the expression of the critical load derived in [22] for a 
circumferential arc with a cone angle of 180 ~ taking into account the effect of the transverse force (shear). 
According to the Lavrent 'ev-Ishlinskii  approach described in [1], the phenomenon of loss of stability of the 
radial axisymmetr ic  mode of motion and transition to nonaxisymmetric  flexural modes of motion is t reated 
as a change of the type of solution of the differential equat ion 

02qn D n2(n 2 - 1)(n 2 - 02) fn )' q2 P Rs 
Ot -- '5- + R4h----~p n 2 + 1 q'~ - Rhp(n  2 + 1 = D + 1, 

which arises after subst i tut ion of expression (4) into the equation of small flexural vibrations of a ring in its 
plane under  uniform external pressure p: 

0 z {02w 
- - -  w)  + + + + + = f(~2), R h p - ~  \ O~y 2 - ~  \ O~ 6 2 ~ O~ 2 ] p ~ , ~  O~ 2 ] 

where f ( ~ )  is a function determined by the initial geometric irregularities. In the case of positive values of the 
coefficient at qn, the solution is a sum of harmonic functions and describes the vibrations of the system. In the 
case of negative values of the coefficient, the solution is the  sum of two exponents ,  one of which damps and 
tends to zero, and the second increases without bound. This  implies an exponential  increase in the ampli tudes 
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TABLE 1 

n pO/pO (I) p*/p~ (II) p*/p~ (III) p*/p~ (IV) n" 

3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 

2.7 
5.0 
8.0 

11.7 
16.0 
21.0 
26.7 
33.0 
40.0 
47.7 
56.0 
65.0 
74.7 

2.5 
4.5 
6.7 
9.1 

11.5 
13.7 
15.8 
17.8 
19.6 
21.3 
22.8 
24.0 
25.3 

2.4 
4.1 
5.9 
7.5 
9.1 

10.4 
11.5 
12.5 
13.3 
14.1 
14.7 
15.1 
15.7 

2.6 
4.9 
7.7 

11.1 
15.1 
19.3 
24.0 
29.0 
34.1 
39.6 
45.2 
50.8 
56.5 

2 
3 
4 
4 
5 
6 
6 
7 
8 
9 
9 

10 
11 

N o t e .  I )  ignoring shear; II) E/G = 10 and R/h = 10; 
III) E/G = 20 and R/h = 10; IV) E/G = 10 and R/h = 25. 

TABLE 2 

2 0.73 

3 1.37 

4 2.19 

5 3.12 

6 4.37 

7 5.60 

8 

9 

N o t e .  R/h = 10 .  

of normal deflections q,~ and is understood as loss of stability of the system. In our case, we consider Eq. (5) 
with zero right side f (~ )  = 0. The critical loads of the static problem ignoring shear are given by the formula 
pO = D/R3(n 2 _ 1) (k = 2, 3, 4 , . . . ,  n) the lowest of which at n = 2 (Euler load) is p0 = 3D/R 3 (Moris L~vy's 
solution). 

Thus, the coefficients a ignoring shear [1] and the coefficients c~* taking into account shear describe 
the rate of loss of stability for the dynamic mode with number n, i.e., the coefficients at the exponents are 
given by the formulas 

D n 2 ( n 2 - 1 ) ( 3  p___+l_n2 ) 
a = R4hp n 2 + 1 Pe 

- 3 P + l - n  2 1 . 
, D n2(n 2 1) x 

a = R4hp (E~/G)n 4 + ( I + E ~ / G ) n  2+1  l+4E ,5 /Gpe  G I + 4 E ~ / G  

A comparison of the expressions for the coefficient a with and without shear shows that in the last 
case, the value of the coefficient depends not only on the rigid and geometric characteristics but also on the 
value of the ratio E~/G. This ratio also determines the ratio of p* to the corresponding (with allowance for 
shear) Euler load p~ at dynamic loads equal to the series values of the critical loads of the static problem. In 
this case, the largest values of the coefficient a are for harmonics with number n = n*, which is determined 
as the nearest integer to the value of n as to the parameter for which the function a(n) reaches a maximum 
value, and the number n* is the number (in our case, the number of flexural waves along the circle of the ring) 
of the most rapidly increasing buckling mode. Table 1 gives the calculated ratio of the critical load p* to the 
Euler load p~ and n* under dynamic loads equal to successively increasing values n of the critical loads of the 
static problem (i.e., the loads at which, in statics, n waves form along the circle of the ring) for various ratios 
E/G (from 10 to 20), which correspond to real values of the strength properties of high-strength unidirectional 
composites [23]. 

Analysis of the results given in Table 1 shows that  allowance for transverse shear strains for flexural 
motions of composite rings in dynamics leads to a considerable decrease in the ratio of the critical compressing 
load to the static Euler load for higher-order buckling modes. Typically, the number of waves that form upon 
higher-order-mode buckling (the value of n*) does not change and coincides with the values in [1], calculated 
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ignoring the shear effect, and there is only a decrease in the magni tude of the critical load (the magni tude 
of overload as compared to static load) at which there is dynamic  buckling for the mode considered. For a 
thin-wall ring loaded by internal or external hydros ta t ic  pressures, the following relations hold: 

R a . D n 2 - -  1 h2(n 2 - -  1 )  

a = p ~ ,  e =  E '  p = - ~  l + ( Z a / G ) n  2 ~ ~ =  1 2 R 2 ( 1 - u 2 ) [ l + ( Z h / G ) n 2 ] "  

Thus, to accumulate,  during extension, elastic energy tha t  is sufficient for compression failure, the extended 
ring should reach the elastic strain defined by the expression given above. Table 2 gives the circumferential 
strains that  correspond to the  applied external  d is t r ibuted pressure at which the ring under static loading 
would lose stabili ty of higher modes with formation of more than two flexural waves along the circle (ignoring 
shear). Hence it follows that  a ring with the indicated geometric parameters made of a metal or a composite 
with limiting elastic strains less than 1% cannot  fail by this mechanism since it fails in tension before this. 
At the same t ime,  formation of more than seven flexural waves along the circle even for a ring made of 
unidirectional fiberglass plastic is improbable because of the excess of the limiting failure strain for fiberglass. 

3. P a r a m e t r i c  V i b r a t i o n s  of  a R i n g .  For the unper turbed  axisymmetric vibration mode of a ring, 
the differential equation of motion is obtained from system (2), in which the only remaining displacement is 
the normal deflection w, which does not depend on the angle 4. 

We examine the stability of the flexural motions of the ring under axial loading N which is periodic in 
time: 

Rhp - - ~  044 + - ~ R3 \ 046 2 ~ O~ 2 ./ 

R(1 - u 2) a ~  -----~ + + ~ + a4~j  = o. (6) 

We divide all terms of Eq. (6) by Rhp,  in t roduce the dimensionless t ime -r = t c /R ,  where c 2 = 
E/[p(1 - v2)], and reduce the  common multiplier.  As in Sec. 3, we seek a solution in the form (4) 

02qn [l +" ( 1 - -  f f ' ~ ) n 2 - -  f f~ 2 

E6"~ 4 E~ ns +[o~(n6 - 2n4 + n 2 ) - e ~ o c o s v ( ( l  + ---~-fn -- --~= - - n 2 ) ] q n = O .  

In this case, for the functions qn(r), we obtain the  following Mathieu differential equation with real coefficients 
[24]: 

Here, in our case, 

A , , = a  

qn + (An - #n cos v) qn = O. 

n 6 - 2n 4 + n 2 (1 + E 6 / G ) n  4 - ( E 6 / G ) n  6 - n 2 

1 + (1 - E,5/G)n 2 - ( E 6 / G ) n  4' /~" = e~0 1 + (1 - E 6 / G ) n  2 - ( E 6 / G ) n  4 " (7) 

From the solution of the Mathieu equat ion it follows that  the amplitudes %( r )  can increase without 
bound if the point  with the  coordinates (An, gn) is in an instability region of a Mathieu diagram [24]. This 
diagram is shown schematically in Fig. la, where the  dashed regions are stability regions. The  solid curves in 
Fig. ib show a Mathieu diagram for small values of (An, #~). To determine which mode numbers n fall in the 
instability region, it is necessary to plot, on the Mathieu diagram, points whose coordinates are calculated 
from formulas (7) for integer values of n (n = 2, 3, 4, 5, 6 , . . . ) .  In this case, 

(1 + E 6 / G ) n  4 - ( E 6 / G ) n  6 - n 2 n 4 - -  n 2 

#~ = ~ 0  1 + (1 -- E 6 / G ) n  2 - ( E 6 / G ) n  4 = ~ 0  n2 + 1 

Thus, the value of #n depends  not on the value of the ratio E 6 / G  but only on the value of the initial specified 
elastic strain (or the instantaneously applied initial velocity). 
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For real high-strength unidirectional composites (including fiberglass), the ratio of the elastic constants 
E/G can be large enough: 10-20 and higher [23]. Therefore, in each particular case, a system can fall in both 
the dynamic instability region and the dynamic stability regions. Figure 2 shows calculated points that  
correspond to the numbers n = 3 , 4 , . . . ,  10 for various geometric and rigid ratios of the elastic ring with 
R/h = 10 (Fig. 2a) and R/h = 25 (Fig. 2b). Filled points correspond to E/G = 10, and open points to 
E/G = 20. The  initial strain was limited by a value of 0.04, and the dashed curves 1-4 correspond to initial 
tensile strains e~0 = 4, 3, 2, and 1%. Vibration modes with n larger than 10 were not considered since, with 
increase in the parameter  An, the dynamic stability regions in the Mathieu diagram merge (see Fig. l a ) ,  and 
the probability of the system falling in the very narrow regions of dynamic instability is extremely low. It 
is obvious tha t  at a certain level of initial strains, which determines the value of #,~, some modes of flexural 
vibrations fall in the dynamic  instability region. Although it is ra ther  difficult to trace the dynamics of such 
process, one might expect that  fracture occurs precisely for this mode. It should be noted that  as the ring 
thickness decreases, the effect of the stiffness ratio E/G becomes negligible (Fig. 2b), and for thin rings and 
shells with ratio R/h > 100, it can be ignored altogether. For small (for composites) initial strains (about 
0.00i-0.005), dynamic instability does not develop even in the case of many tens of vibration periods because 
the value of #,~ is small in this case and the curve formed by points with mode numbers is close to the abscissa. 
In this case, because of the presence of internal damping in the system, the real Mathieu stability diagram 
lies somewhat higher and does not touch the horizontal axis [14] (dashed curves in Fig. lb), and none of the 
modes of mot ion can fall in the instability region. This has been confirmed experimentally for some types of 
composites and metals [25, 26]. 

When more than one flexural vibration mode falls in the instability region at specified geometric and 
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rigid parameters, the present analysis cannot predict which of them dominates. In this case, it is necessary 
to employ numerical methods, similar to those described in [27, 28], to solve the equations of motion for an 
elastic ring or shell. 

4. C o m p a r i s o n  wi th  E x p e r i m e n t a l  Resul ts .  Internal impulsive loading of fiberglass rings (the 
reinforcing fibers are VM fiberglass and I~DT-10 epoxy matrix) with wall thickness 1 to 5 mm was performed 
in accordance with the scheme of [26], shown in Fig. 1. The cylindrical explosive charge was a cast rod with 
diameter of 8 to 12 mm made of 50/50 TNT/RDX alloy. Figure 3a-d shows the appearance of ring-type 
fiberglass specimens that underwent bending fracture in compression under initial internal impulsive loading 
and a typical oscillogram of deformation and fracture of a tubular specimen made of the same material 
(Fig. 3@ The fracture of the ring-type and tubular specimens occurred in the compression phase after the 
first maximum of tensile circumferential deformation was reached. The fact that the specimens did not fail 
in tension was established from oscillograms of deformation, from which it followed that the limiting failure 
strains of the material were not reached in tension. Visual inspection of the loaded specimens showed that: 
(1) failure began on the inside of the ring or shell; (2) the external fibers of the material at the same places 
were not broken. Different numbers (three to six) of cracks, depending on the wall thickness of the ring- 
type specimen or shell and the value of the applied impulse (diameter of the explosive charge), were located 
periodically along the perimeter of the walls of the specimen. Specimens with three cracks are shown in Fig. 3a 
and b, specimens with four cracks are shown in Fig. 3c, and specimens with five cracks along the circle are 
shown in Fig ad. It is remarkable that a similar fracture mechanism was observed only for fiberglass rings and 
shells [7-10] and was not observed for acry!ic plastic, which possesses smaller limiting elastic failure strains 
and much higher damping ability [23]. 

5. Conclus ions .  A differential equation of flexural motion for an elastic ring is obtained and studied 
with allowance for the action of the transverse force, i.e., with allowance for transverse shear strains. This 
equation describes the behavior of an elastic high-strength composite ring with a high ratio of the longitudinal 
elasticity modulus to the transverse shear modulus due to the low general shear rigidity of the reinforcing 
fiber packet of the composite in the ring plane because of the low shear rigidity of the epoxy binder. 

Analysis of the solution of the equation of flexural motion for the elastic ring shows that allowance for 
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transverse shear strains in flexural motions of composite rings in dynamics leads to a considerable decrease 
in the ratio of the critical compressing load to the static buckling load for higher-order flexural modes. 

Furthermore, analysis of the parametric flexural vibrations of a ring taking shear into account 
indicates that buckling is possible for the radial axisymmetric mode of motion and that the amplitudes 
of nonaxisymmetric flexural modes can increase. It is established that the value of the ratio of the elastic 
constants of the composite influences the possibility of the system falling in the dynamic instability region. 

The authors are grateful to V. M. Ermolenko for a number of valuable remarks and proposals and for 
fruitful discussions of the present work. 
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